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S U M M A R Y  
A numerical solution joining Carrier and Lin's solution near the leading edge to the boundary layer solution at large 
distance of the leading edge is presented. The solution is valid for any Reynolds number. Results are given for the skin 
friction, the integrated skin friction, the displacement thickness, the pressure along the plate and the velocity ahead 
of the plate:The asymptotic value of the integrated skin friction agrees very well with the exact value. The displacement 
thickness is already different from zero for small distances ahead of the plate. 

1. Introduction 

Boundary layer theory provides an asymptotic solution of the Navier-Stokes equations 
valid for large values of x, that is far downstream the plate. Near the leading edge the nature 
of the flow has been analysed by Carrier and Lin [1]. Various attempts have been made to 
join the leading edge solution to the boundary layer solution but all of these introduce additional 
assumptions. The best results seem to have been obtained by Dean [3] who makes the assump- 
tion that the boundary layer solution is approximately valid everywhere and who uses this 
solution to evaluate the non-linear convective terms in the Navier-Stokes equations. Davis [2] 
used a series truncation method in which the stream function is locally expanded in a power 
series in the x-coordinate. He presents results for a first and a second truncation which strongly 
support Dean's results. 

Higher approximations of boundary layer theory, also valid for large values of x, have been 
given by Stewartson [12], Goldstein [6], van Dyke [4] and Murray [11]. Stewartson showed 
that the higher approximations must contain logarithmic terms in order to have exponential 
decay of vorticity in the y-direction, perpendicular to the plate. His solution contains also 
arbitrary constants, of which the values are fixed by the behaviour at smaller x, but as long as 
this solution was not joined to the solution at the leading edge, they could not be determined. 

Near the leading edge Lewis and Carrier [10] solved the Oseen approximation of the Navier- 
Stokes equations, but later work showed that this was not a valid first approximation, see e.g. 
Davis [2J-and Lagerstrom [9, pages 89 and 90]. Imai [71 patchedStewartson's asymptotic solu- 
tion for large x to the Carrier-Lin solution for small x at Rx = 1 (Rx is Reynolds number based 
on the distance x). Although this gives a better numerical result for the skin friction near the 
leading edge than the Oseen approximation, it can neither be seen as a satisfactory procedure. 

The present paper gives the method by which a solution valid for all x is obtained which is 
exact except for truncation and discretization errors in the numerical solution of the final set of 
partial differential equations. The dependent variables which are solved are the discrepancies 
of stream function and vorticity from the values they would assume according to first-order 
boundary layer theory. This leads to a well-posed boundary value problem in a quarter in- 
finite plane (using parabolic coordinates). In order to avoid the numerical difficulties connected 
with infinite regions, a transformation to a rectangle is performed. Since the dependent variables 
are small quantities (this feature accounts for the success of Dean's results) the truncation and 
discretization errors in our solution will be very small indeed. The solution is valid for any 
Reynolds number provided the flow is laminar and incompressible. 

Journal of Engineering Math., Vol. 4 (1970) 9-27 



10 A. I. van de Vooren, D. Dijkstra 

Results are presented for the local skin friction and the integrated skin friction which are 
compared to those of other investigators. Also, the displacement thickness of the boundary layer 
is calculated for all values ofx (including negative values). This had to be based upon a gener- 
alized definition since the exponential decay of the vorticity combines with an algebraic 
approach of the stream function in y-direction to its first-order boundary layer value. The 
displacement thickness is defined as the distance along which the wall should be displaced in 
order to obtain without viscosity the same outer potential flow as before. Finally, results for the 
pressure along the plate are presented. 

2. Formulation of the Problem 

The Navier-Stokes equations for an incompressible, viscous fluid can be combined into one 
equation for the stream function 0, see e.g. van Dyke I-4], 

9(0, AO) = vAAO (2.1) 
a(y, x) 

where v is the kinematic viscosity, A is the Laplacian and the Jacobian 

~(~/, A~) denotes gO gA~ g~o gA~ 
g(y,x) gy ax ~x gy 

The boundary conditions for the semi-infinite plate are 

0 (x, 0) = 0 ] 
tpy(X, 0)= 0 for x >0  / (2.2) 

O ( x , y ) ~ U o y  for x ~ - o o  

In various regions of the field different terms of eq. (2.1) can be neglected. Outside the bound- 
ary layer viscosity can be neglected and (2.1) becomes 

 0=0. 

Boundary layer theory is based upon the assumption that in the boundary layer the operator 
A can be replaced by g2/gy2, thus neglecting ~2/~X2. By aid of the transformations 

x = x l l ,  Y = Yl , 0 = 7 J ~ o  vl, 

where I is some reference length and Uo is the undisturbed speed, eq. (2.1) becomes 

~(~, e2 ~,/ty~) ~4 

g(y , xl) " 

After an integration to Yl the usual boundary layer equation is obtained. 
Near the leading edge boundary layer theory becomes inconsistent since it yields a vertical 

velocity v which becomes infinite as O(x -~) for x--.0 and hence gv/gx = - g20/Ox2 could not be 
neglected there. 

Near the leading edge all terms ofeq. (2.1) are equally important and we introduce the follow- 
ing transformation in agreement with Carrier and Lin [1] 

lxl lyt 
x -  R ' Y = ~ - ,  0 = ~ v  (2.3) 

where R =  Uol/v is the Reynolds number based upon the reference length I. xl and Yl are di- 
mensionless coordinates. If these are O(1), which means x/l and y/l are O(R-  1), the full equa- 
tion 
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The Navier-Stokes solution for laminar flow 11 

~(7., A~) a 2 U 
0(Yl, xl) - AAT*, where A = ax-~ + --W,0yi 

must be taken into account. 
It is preferable to write eq. (2.4) as a set of two partial differential equations 

3(7.,F) _ AF 
c(Yl '  XX) 

F=AT*.  

(2.4) 

(2.5) 

The new quantity F is related to the local vorticity m by the relation 

v Ou & 
F = ~U ~ co, where co - 

8y 3x" 

The boundary conditions become 

x l < 0 ,  y , = 0  7*=0, F = 0  

07* 
x l > 0 ,  y l = 0  7*=0, = 0  

0y~ 

x l ~  - o o  7 .~Yl ,  F ~ 0  

37. 
y~--+ oc - - - +  1, F-+O 

0y~ 

(2.6) 

(2.7) 

The condition F = 0  ahead of the plate (xl < 0, Yl =0) follows from reasons of symmetry. 
The solution following from eqs. (2.5) and (2.7) should be such that it matches smoothly with 

the boundary layer solution for xl--* o% Yl < O (x/x1) as well as with the potential theoretical 
solution outside the boundary layer. 

3. Introduction of Parabolic Coordinates 

It has first been shown by Kaplun [8] that parabolic coordinates are optimal for the semi- 
infinite flat plate ; this means that the external potential flow is included asymptotically in the 
boundary layer solution correctly to a higher order (including order R -+) than when using 
other coordinates, see also Goldstein [6] and van Dyke [4]. When the full Navier-Stokes 
equations are used, parabolic coordinates are also preferable. Therefore, we introduce 

XI = ~2 _ ~2 

Yl = 2r 

Transformation of eqs. (2.5) to the parabolic coordinates ~, t/yields 

AF - 0 (~ ,  r) 
4) 

02 02 
where A = ~ - ~ 4  &/2. 

AT* = 4 ( ~ 2 + ~ 2 ) F  

The boundary conditions are 

ahead of the plate ~ = 0 7* = 0, F = 0 

07* 
at the plate t/= 0 7 ~ = 0, - -  = 0 

&t 

l 
l 

(3.1) 

(3.2) 

(3.3) 
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boundarylayer ofplate ~--,oo 87`~--*(f(2t/)' F--* ~ f " ( 2 t / )  } (cont'd)(3"3) 

outside the boundary layer t/~oo ~ --* 24, F ~ 0 .  

In parabolic coordinates the solution for the stream function in the boundary-layer approxi- 
mation is, Goldstein [6], 

--- <f (2n)  

and this must then be the limiting form to which 7` approaches in the present theory if ~ ~ oo. 
The pertaining value of F follows from the second equation of (3.2). The symbolfdenotes the 
Blasius function defined by 

2 f " + f f ' =  O, f(O) =f'(0) = 0, f'(oo) = 1 (3.4) 

where primes denote differentiations to the argument 2t/. 
It appears that it is preferable to replace the dependent variable F by K, defined by 

K ---W + r  �9 (3.5) 

While F is directly proportional to the local vorticity, we shall denote K by "modified voritieity". 
The reason is that near the leading edge of the plate (4 = 0, r/= 0) the solution of Carrier 

and Lin [1] applies which gives the following behaviour for ~o and F near the origin 

7` ~ 4~t/2 F ~ 2r ~2§ ' 

apart from an unknown multiplicative constant. This shows that F is singular near the origin, 
but that K remains bounded. 

The differential equations for 7 ~ and K become 

(3.6) 

7`=0, 

7`=0, 

7 ` ~  (2t/), (3.7) 

A ( - T ~ 2 - ) =  8 { 7`' K/(~2 + ~/2)} 

82 82 
A7`---4K, where A = ~ + - -  

8~/2 �9 

The boundary conditions are 

K = 0  

87' 
t /=0 = 0  

@ 

~--* oo K~ff"(2~/) 

07` 
r/~ oo - -  --, 24, K-*0, see Sect. 4. 

@ 

4. Asymptotic Behaviour for Large Values of the Coordinates 

In order to investigate the case 4 ~  oe and/or tl-~ oo we transform to polar coordinates in the 
plane of the parabolic variables ~ and t/. Hence 

= r cos 0, tl = r sin 0. (4.1) 

After transformation the differential equations become 

( K )  1 8(7`, K/r 2) 
a ~ = r 8(}),r) (4.2) 
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~2 1 ~ 1 ~2 
A ~ = 4K, where A = ~ r  2 -J- -/" ~ q- 7 --'002 

For large values of r the boundary layer shrinks to 0 = 0, since it is well-known that the argu- 
ment of the Blasius function, 2q, remains finite in the boundary layer. With r--+ 0% this implies 
0-,0.  Hence, if r--+ 0% all non-zero values of 0 correspond to potential flow. It can also be said 
that 0 is the outer expansion variable. The boundary layer for large values of r, that is of 4, can 
only be investigated from eqs. (3.6) where t/is the inner expansion variable. 

The main contribution to 7 j for large r comes from the potential flow as modified by the 
displacement thickness of the boundary layer. This yields 

v,  = (4 .3)  

where fi is determined from the condition that 

/ ( 2 q ) ~ 2 t / - f l  for q--,oo, f l=1.72078765.  

Eqn. (4.3) is not the exact solution for the potential flow about plate + displacement thickness, 
but it gives the first terms of an asymptotic series. Important is that there is no term of 0(1) 
for ~ or q--+ oo. This is shown in [-14]. It corresponds to the fact that in the outer expansions 
given by Goldstein [5] and van Dyke [4] as 

fl~ (in their notation)  =y-kT+ . . . .  

there is no term of order R -  1. 
The result (4.3) might, in principle, also be modified by the fact that the Navier-Stokes solu- 

tion changes the displacement thickness. This, however, is only a local effect, see [14], which 
neither contributes a term O (1) in (4.3). 

Hence, the asymptotic series for ~ and K begin like 

= r 2 sin 20-fir cos 0+o(1)  
for r--* 0% 0 > 0. (4.4} 

= o ( 1 )  

In the boundary layer the asymptotic series for large ~ are 

k~= Cf(2q)+o(1), K=r for r  (4.5) 

At the outer side of the boundary layer (~/~ oo) the solutions (4.4) and (4.5) match. 
An important point is that the vorticity F and also K decreases exponentially for large values 

of q. A mathematically rigorous proof of this property is difficult to give, but there exists ample 
evidence for its truth. Substitution of (4.3) in the first equation (3.2) or (3.6) leads to an equation 
which only has solutions decreasing exponentially for ~/--+ oo. This is shown in [-14]. Moreover 
the numerical results wholly confirmed this behaviour. It should be emphasized that the ap- 
proach of 7 ~ to its value (4.3) is algebraic for large ~/. 

5. Transformation to a Rectangular Region 

The boundary value problem as formulated by (3.6) and (3.7) has two complications with 
regard to its numerical solution: 

(i) the region is not bounded, being a quarter-infinite plane 
(ii) the functions 7 ~ and K are not always bounded if the coordinates approach infinity. 
The second complication can be removed quite easily by introducing as new dependent 

variables 

~'Jl = ~ J - - ~ ( 2 7 / )  , g I = U - f f t t ( 2 ~ l ) ,  (5.1) 
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The functions T 1 and K~ denote the differences of stream function and modified vorticity from 
the values, they assume in first-order boundary-layer theory. Introduction of (5.1) in eqs. (3.6) 
leads to the new equations 

OT, OK~ OTa gK~ ctT~ { 2r/(KI+Q~")) gT~ (_,, 2{(K~+~")~ 
AK, < <  +Wt j ;+ 

O K ~ /  4~ ) #Kt f  @ f)  2K1 , 2~r/f" ,~ ~, 
+ ~ - t 2 5 0  c + ~-T~q2 + &/ ,~2+q2 + ~-~-~2(r / f -2~2f ' -2)*  ~_--U~2~zrg-f). 

g2 g2 
ATt--4K1,  where A = ~ 5 + - -  (5.2) 0/~2 " 

In this derivation use has been made of eq. (3.4). 
The boundary conditions are now completely homogeneous, viz. 

4=0 T 1 =0 K 1 =0 

q = 0  ~r't 1 --~ 0 - -  0 
&/ (5.3) 

~-~oo T~-->0 K I ~ 0  

r/--* oo T1--*0 KI~O 

The condition for q ~ oo has been obtained by using (4.3) and remarking that this is the asymp- 
totic expansion of ~(2q) for q~  0% if exponentially small terms are neglected. 

There is a non-trivial solution of the boundary value problem since the equation for K~ is 
not homogeneous. 

The first difficulty (i) is removed by transforming the quarter-infinite plane to a rectangle. 
Considerable care has to be taken in this step. The transformation should be such that the 
derivatives of T1 and K, to the new independent variables remain finite since otherwise the 
accuracy of the numerical solution may be badly affected. This means that the transformation 
depends upon the way in which T 1 and K~ approach zero. 

We first consider the transformation in i-direction. Stewartson [12] has shown that we must 
have for ~ 

T,,-, h(2q) +~g(2q)  

1 . K, ~ ln r 
(5.4) 

in order to obtain exponential decrease of K~ for large values of q. The relations (5.4) are such 
that the second equation (5.2) is automatically satisfied, to the order considered here. Sub- 
stitution of(5.4) into the first equation (5.2) leads to equations for h and g, see Appendix. 

The transformation we introduce is 

a =  1 ln(1+ /2) 
4/2 (5.5) 

Near ~ = 0 the transformation behaves as a = �88 while for ~--, oo we have 

a ~  1 ln(~/2) 
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The Navier-Stokes solution for laminar f low 15 

The variable ~ has been multiplied by 1 in order to have at the middle of the a-interval, namely 
at a =  0.5, a value of ~ equal to 5, to which correspond maximum values of kv~ and K1 (this fol- 
lows from the numerical calculations). 

It follows from eqs. (5.4) and (5.5) that ~7Jl/ba and ~K~/~a remain finite for ~ ~ c~, ( a ~  1). 
For example, for ~ 0% 

OgJa _ e~P~ d4 _ _ h §  
88 83 da 

J 

Eqs. (5.4) give the beginning of the asymptotic series for large ~ in the boundary layer, com- 
parable to eq. (4.5). We now want to find the equivalent ofeq. (4.4), that is the asymptotic series 
in the remaining part of the r, 0-plane. It has been observed in Sect. 4 that K decreases expo- 
nentially and hence 7Jl will be a harmonic function outside the boundary layer. 

The harmonic function iF1 should match to the value 

1 + 
7~ ~ -  9(c~) at 0 = 0  (5.6) 

For matching the first term we need a harmonic function which behaves like ~- a In ~ along 
the i-axis. We remark that the real part of a holomorphic function in the complex plane is a 
harmonic function. Therefore we take for the first term 

In z In r 0 sin 0 
R e - - =  c o s 0 " - - + - -  

z /" r 

However, since the harmonic function should vanish along the/]-axis (0 = u/2), we modify it 
to 

c~ O ln r ( 2  o) sin r - - -r 

since r -  1 sin 0 is also a harmonic function. 
The second term of (5.6) gives rise to the harmonic function r -  l cos 0. Hence, the total har- 

monic function matching with (5.6) for 0 = 0, is given by 

{ cos0 ~ =  c o s 0 . 1 n r  si 0 h(oo) + - - g ( o o ) .  (5.7) 
r r 

In 4,/] coordinates this becomes (outside the boundary layer) 

/] 4 /  4 
) - - -  +/]2 ~z+/]2 42 tan-  h(oo) + - - g ( o o ) .  (5.8) 

For  large/] and finite 4 this contains terms of order 

In/] and 1 
/]2 / /2 " 

The transformation in/]-direction, which has been applied is 

ST 
/] = 5-4-----~ + 5z2(1-'c2)" (5.9) 

The [0, ~ ]  interval in/] is transformed to the [0, 1.25] interval in -c. 
The transformation (5.9) makes 0t/'l/&c equal to 0 for ~ = 1.25. For/]  = 0 the derivative dtl/dr 

is equal to l. The specific form of the transformation (5.9) is determined for a great part by re- 
quirements of stability of the numerical solution, see Sect. 6. 

Applying the transformations (5.5) and (5.9) the partial differential equations become 
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16 A. I. van de Vooren, D. Dijkstra 

( do-~ 2 02K1 ( d z ~  2 (~2K 1 (0~r/i 0 K  1 01/'/1 ̀  (~Ul_ ~ do" dr  

0T1 do.{ 2q(KI+Q~")'~ 0g", dz{f,,  
+ a--a- d7 gf ' '  + ~_ + ~/2 j + 0 ~  dq 

4~ 2' ~' q2o'[ 0K1 8K* ~d: (2(-2e' + - + { ~  (-~2~,2 
+ ~ "{~-~ ~2---~J d~2 j ~ - ,  

2K, 2 , 2 2{r/f" 
+ ~ (r/f- 2~ f - ) + ~ (2r/f ' - f ) .  

~-_] ~ q- \ ~ j /  --0-~-- q- d~ 2 00 q- dr/2 OZ -- 4K , .  

�9 The boundary conditions become 

o .=0 T I = 0 ,  K1 = 0  

gT1 r = 0  T , = 0 ,  & - 0  

o-= 1 T 1 = 0 ,  K 1 = 0  

"c = 1.25 T 1 = 0, K 1 = 0. 

(5.10) 

2{ (K1 + f-_f") [ 

f ) -  d2r) 

(5.1o) 

(5.11) 

6. The Numerical Solution 

Eqs. (5.10) have been replaced by a system of difference equations, based on a net of which the 
netpoints are o-=0(1/32)1 and r=0(1/32)1(1/128)1.25. Derivatives have been replaced by 
simple difference expressions such as 

~K1 (o., r) - K~(a+h, r ) - K l ( a - h ,  ~) 
~a 2h 

82K1 (a, z)= Kl(a+h' z ) -2Kl (a '  v)+ Kl (a-h '  z) 
O o. 2 h 2 

where h is the step in o.-direction. For the derivatives to z at z = 1, where the step in r-direction 
changes in magnitude, special formulae have been derived in an obvious way. 

A slight complication forms the second boundary condition (5.11) since there ~T1/0r in- 
stead of K1 vanishes. The value of Ka at r = 0  then follows from the second equation (5.10) 
which for r =0  simplifies to (dr/dtl = 1) 

02J'//1 -- 4K1 
~r 2 

Taking int o account that T ,  and ~ T j &  vanish for "c = 0, the difference form of this equation 
becomes 

K?+l)(o.,  0) - v?)(o., h) 
2h z 

The system of difference equations is solved by iteration, taking e.g. the (n + 1) th approximate 
value K(~"+l)(o., z) from the neighbouring values of K(t")(o.• z), K(l")(o., r_+k)and similar 
values of T(, "~. However, it has already been found by Thom and Apelt [13], their experience 
being confirmed by our calculations, that this iteration procedure was nonstable. It is neces- 
sary to accept as new value for the (n + 1) th step not the value given by the difference equation, 
but to introduce an underrelaxation factor co yielding as new value for the (n + 1) th step 
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The Navier-Stokes solution for laminar flow 17 

(6.1) 

It was found that with co = 0.5 the iteration converged (slowly), but that larger values often 
gave rise to divergences. The'underrelaxation factor is applied to both K~ and 7/1- 

The reason of the instability lies in the first equation (5.10). The following analysis shows that 
it may happen that the error in K ~" + t) (a, z) is larger than that in K ~") (a, z). Considering in the 
difference equation arising from the first equation (5.10) only the terms referring to the point 
0", "C), 

or  

ga,? 
2 ( \d{ /  + 

h 2 } \dtl/ JK]"+:)(a,  r) - { /+q2  ~/ - ~ - q  + ( r0c-2r  x 

• K(: ">(G, ,) +... 

h 2 
Ki"+'(~,,) = ~ + ~ <  

which we write as 

~ TJ : ~ Tq 
: ~ - t / - ~ -  + (2 + 2 : e f  ' -  ~ )  

de] + \ & /  

.K~(~,~)+...  

K(~"+ "(,,, ~) = (Q + 1)Ki")(,~, ~) + . . . .  

Applying now eq. (6.1), we see that the new value for the (n+ 1) '~ step in the point (a, z) be- 
comes 

(~oQ+ 1)K~)(~, ~). 

It will be clear that if K(~ ") (a, ~) possesses an error e, the error in the same point at the next 
step becomes 

(~oQ + 1)~. 

For stability we should have 

- 2 <  coQ< 0.  (6.2) 

The largest values of Q arise for ~ 0% t l~ oo. S i n c e f ' ~  1 for t /~  o% we can write approxi- 
mately 

2h 2 
Q + l ~ ( d a ~  2 (dz~2, if t / i s l a r g e a n d r  

\d~)  + \ & )  

The difficulty is that for large values of r and q the denominator becomes very small leading 
to positive values of Q, for which the stability criterion (6.2) never can be satisfied. In order to 
make Q negative, we should have 

de/ + \-d~J >2ha" (6.3) 

This requirement has partly determined the transformation (5.9). Since K decreases expo- 
nentially in q-direction, it appeared that we can safely put K = 0 if t/>= 5. For these values of t/, 
the equation for K can be left out of account. We only have to take care of the stability of the 
calculations for ~/< 5, corresponding to z < 1. We wanted stability for both h =  1 and h = ~ -  
since this enables us to estimate the discretization error by comparison of the two calculations. 
Since for large values of 4, da/dr vanishes, the final requirement is that at the points with the 
highest r-values where the difference equation is applied (that is at 15 : = ~ ) ,  we should have 
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18 A. I. van de Vooren, D. Dijkstra 

dz x/2 

dr 16 " 
The transformation (5.9) satisfies this requirement and gives no stability difficulties. 

It may finally be remarked that the values of { corresponding to the values of o- given by 
0(h) 1 are found from eq. (5.5) by aid ofa Newton-Raphson procedure. 

7. The Displacement Thickness 

The displacement thickness is defined as the distance along which the wall should be displaced 
in order to obtain without viscosity the same outer potential flow as with the original wall and 
viscosity. According to eq. (5.1) we have 

7 / =  T 1 + ~c(2q). 

Outside the boundary layer the last term is equal to the harmonic function 4 (2q - fi). It was 
found in the preceding section that for ~/> 5 T1 is also harmonic. When we denote the analytic 
continuation of ~t I from the region q > 5 into the region 0 < q <  5 by T o, the curve 

To (4, ~) + 4 (2~ -/~) = 0 (7.1) 

gives the displaced wall since this corresponds to T = 0 if there is no viscosity and the outer 
flow is the same. 

The difficulty is to find the analytic continuation To. This has to satisfy the following condi- 
tions 

T O and OTo/?rl are given for t/=5 

T o = 0  for 4 = 0  

To--,0 for {--,oo 

We want to determine To in the semi-infinite strip ~ = 0, 0 < 1I =< 5 since the displaced wall 
lies certainly herein. This cannot be done by a numerical method calculating To by aid of 
differences from the equation A To = 0 at lines r/= constant from ~/= 5 to q = 0, since this is a 
highly unstable method. The problem has been solved by aid of Green's function G ~ of the 
first kind. 

Assume that To is known at every point Q of the strip boundary C, then To in an arbitrary 
point P of the strip follows from 

To(P) = c To(Q) ~ (P, Q)ds 0 , (7.2) 

where n is the normal to C, directed outward. 
In particular, we can calculate by aid of this formula 0To/8~ / at the upper side ~/= 5. But, in 

reality, this function has been given, while T o at the lower side t /=0 is unknown. Hence, we 
obtain an integral equation for T o along the line i/= 0. Once 7to has been solved we can calcul- 
ate T o in any point of the strip by the usual difference method for solving Dirichlet's problem. 
Then, for each ~, the value of t/can be determined satisfying the relation (7.1). This gives the 
displacement thickness. 

It is shown in [14] that Green's function of the first kind for the semi-infinite strip 

~>=0, 0=< ~_-__ tlo 

is given by 

(Cosh ~ c o s 0 - C o s h  ~1 cosq~)2+ (Sinh ~sin~/-Sinh ~ sinfh) 2 
Gm(P,Q) 

In ~Cosh' ~ c o s 0 -  r ~1 cos Vh)2 + (Sinh ~ sin ~/+ Sinh Ca sin ~h) 2 

where ~ = zoO/t/0, ~, = zt~,/t/o, ~/= zct//~?o, 01 = ~z~h/t/o, while 4, t/and 4,, q, are the coordinates of 
P and Q, respectively. 
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The Navier-Stokes solution for laminar flow 19 

The contribution of the lower side q = 0 to the normal derivative at the upper side q = qo is 
given by 

l ~ - ~  (:'qO)}l . . . .  = - - f~  I//0(~1' 0) d~l" 

After substitution of (7.3) we find 

~Skgo (~, } l f~ Sinh < Sinh <, _ 
" [ -~  •o) l . . . .  - ~o o ~o(~1, O) (Cosh ~+Cosh ~1) 2d~' . (?.4) 

Similarly, the contribution of the upper side to the normal derivative at the upper side is 
equal to 

{8~? (4, q0)} - sinh~ f ;  ~ ~  ~g~ d~ l+  -~~ (7.5) 
.ppe~ n Cosh ~ , - C o s h  ~ n 

where ~ stands for Oq~o/8~ along t/= qo. The derivation of this last formula is given in [14]. 
The sum of eqs. (7.4) and (7.5) leads to an integral equation of the first kind with ~o(~,  0) 

as unknown function. Solution of this integral equation by collocation yields a set of algebraic 
equations which is ill-conditioned. The reason for this is that oscillations in ~o(~, 0) have only 
small influence on 87%/& 1 in points (~, qo). Therefore, these oscillations always creep into a 
solution obtained by collocation. 

A good approximate solution has been obtained by transforming the integral equation to the 
variable o- defined by eq. (5.5). A Galerkin type of approach was followed by approximating the 
unknown function as a finite Fourier series and equating Fourier coefficients of both sides of the 
integral equation. Let the original integral equation be 

t ~176 O~ Sinh_ {- Sinh _~, 
1 Jo 7J~ '(Cosh ~+Cosh ~,)2 d~, = R(~) ~o 

After transformation to the coordinate a, this becomes 

t/'O(al, 0) Sinh ~ Sinh ~, d{ll 
q2 0 (Cosh ~q-Cosh ~,)2 do, 1 d~ = a((7). 

Since ~P vanishes for o-, = 0 and o- 1 = 1., we put 

q~ 7'o(o-,, 0) = cj sin jno-,. 
j=l 

ii = Then ~ cj Sinh ~ sin jna 1 (Cosh ~-Co-sh ~1) 2 do', 
Sinh d~l 

j=l 
Both sides of this equation are expanded in Fourier sine series and the first n coefficients are 

equated. This yields the set of equations 

~' i ~ fo Sinh ~ d~, f ~ cj sin ina Sinh ~da sinjnal (Cosh ~-c-O-sh ~1) 2 d~l da, = R(a)sin inada. 
j=l 0 0 

(7.6) 

By taking n not too large, e.g. 4, the higher oscillations are avoided. Moreover, even if 7% (cr, 0) 
showed a small oscillation e.g. for n = 5 and 6, this oscillation had completely disappeared for 
the q-values which followed from eq. (7.1). Therefore, a smooth curve has been obtained for the 
displacement thickness. 

Journal of Engineerin9 Math., Vol. 4 (1970) 9-27 



20 A. I. van de Vooren, D. D{jkstra 

8. Resnlts 

8.1. Skin friction 

The local coefficient of skin friction for one side of the plate is, Z being the shear stress 

2v C211/ O2t/Y __ 1 C21t ~/ ,= 2 
c: - - = ~ K(~, 0). �89 2 U 2 @2 ,=o= 2 ay 2 ,,=o 242 &/2 o 

Using eq. {5.1) we obtain 

c:= ~f"(O) + ~ Kl(4,0) ,  (8.1) 

wheref" (0) = 0.332057336 is the value given by boundary layer theory and K1 (4, 0) is the value 
coming from the numerical solution of Sect. 6. 

The results for 

4c: = cfx/R~ as function of R~ = Uox/v = 42 

are given in table 1. They have been compared with the results of others in fig. 1. The number 
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Figure 1. Local skin friction. 

f 
boundary layer 

I 
10 4 

lim clx/R x has been calculated by several investigators and the values are listed below (in 
R x  -+ 0 

chronological order). 
Carrier-Lin [1] 0.664 (= boundary layer value) 
Lewis-Carrier [10] 1.128 (-- 2/,/~, Oseen value) 
Dean [3] 0.796 
Imai [7] 0.727 
Davis [2] 0.779 
Present result 0.755. 
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8.2. Integrated skin friction 

The integrated skin friction coefficient is given by 

1t"i ~ 4 i~ Kl(2'  0) o 1.328 4 Cv= -x c rclx = f"(O) + ~ ,tv d2 - ~ + ~ 1 ,  (8.2) 

where the integral I is calculated by transformation to the a-variable (5.5). Then 

I = 1 - al - 2/(2 + {) d a l ,  (8.3) 

where 4= 4(o-1). 
The numerical results for this integral are given in table 1. They have been compared with 

the results of other authors in fig. 2. 
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Figure 2. Integrated skin friction: 41= (Cv- 1.328/x/Rx)R= 

8.3. Asymptotic behaviour of the integrated skin friction 

The asymptotic expansion of Cv for large values of r can be derived from eqs. (8.2) and (5.4). 
The result is (see also [4] and [7]) 

Cv = 1.3284-1 +4100 ~-2 -4{h" (0 ) '  (1 +log ~)-0-332C2} ~, -3 +o(4 -3) (8.4) 

where ~ = \ / R ~  o0. 
The value of h"(0) is given in the Appendix as 0.55090346. 

The coefficient 100 denotes the value of the integral I (8.3) for a = 1 or equivalently ~ = oe 
(8.2). According to our calculations 41oo =2.343, which is the value obtained with h - ~ -  32, h 
being the mesh length in the a, z-plane. This result should be compared with the exact value of 
2.326 obtained by Imai [7] from momentum considerations, see also van Dyke [4]. Under the 
assumption that the discretization error is O(h 2) we obtain from the values 

4/oo = 2.407 (h={~) 

4100 = 2.343 ( h = ~ ) ,  
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the extrapolated result 4Ioo = 2.322, which is still closer to Imai's value. 
Finally the coefficient C 2 in (8.4) has been considered. This coefficient has been introduced in 

the Appendix as an unknown multiplier of the first eigenfunction in higher order boundary 
layer theory. For the determination of C2 we use eqs. (5.4). The constant C 2 is hidden in the 
function 9(2q), see also the Appendix. In the first eq. (5.4) viz. 

In ~ 1 {C z e(2t/) + Ag(2t/)} (8.5) 

where e(2t/)=f-2rbr ' ,  everything is known except C 2. 
The value of C2 must be such that the asymptotic behaviour matches with ~v (3, ~/) coming 

from Sect. 6, for large values of 3. We take a large value of { and consider eq. (8.5) as an equation 
for C2, thus neglecting higher order terms in the expansion. This has been done for several 
values of t/, both inside and outside the boundary layer. In the last region the harmonic con- 
tinuation (5.8) of (8.5) has been used. 

With the result for C2 the asymptotic behaviour (5.4) of K1 (3, q) has been checked. The 
computations have been grouped together in table 2. The result for C2 is 

C 2 = - 2 . 0 _ _ _  10~o. 

8.4. Displacement thickness 

The equation (7.1) gives the displacement thickness in terms of the parabolic coordinates 
and t/. The function 7% (4, t/) is the analytic continuation into the region t/< 5 of the function 
7J1(~, t/). The last function is harmonic for t/>5. 

The numerical values of ~a (3, t/) along the line tl = 5 have been taken from the calculations 
of Sect. 6. Also the derivatives 8 ~ / 8 ~  and 8~P1/c)q along q = 5 have been computed. 

At the line t/= 5 the function 7% must coincide with 7'1, while the derivative O~go/&/has been 
taken equal to ~7sjOq. Then the integral equation for 7% (4, 0) has been set up, see eqs. (7.4) 

1" 1 r 1 
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0,6 7' 

0.00 
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0.%.  -~ lo lo' 1o' 1o" 
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Figure 3. Displacement thickness (inset: parabolic coordinates). 
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and (7.5). Next the Fourier sine coefficients cj have been calculated with eqs. (7.6). The function 
t/' o (a, 0) corresponding to 7% (4, 0) has been evaluated from its truncated Fourier series, and 
the Dirichlet problem for go has been solved with the Gauss-Seidel method using an over- 
relaxation factor of 1.6. This has been performed on the square (0 _< o- < 1 ; 0 < "c < 1) correspond- 
ing to the strip (0 < ~ < oo; 0 <  ~ < 5), see eqs. (5.5) and (5.9). Finally the root ~ = ~* of (7.1) has 
been calculated for ~ = ~ (a) where cr = 0 (h) 1 and h =~2. Thus 

kuo({, t /*)+{(Zt/*-fl)  = 0, { = {(a).  (8.6) 

The displacement thickness t/* has been presented in fig. 3. Also the parabola ~/= fl/2 has been 
given. The latter is the result from boundary-layer theory and may be found from eq. (8.6) by 
neglecting 7%. For numerical results see table 1. These values correspond to N = 4, N denoting 
the number of Fourier coefficients used above. For N = 5 or 6 deviations occur, due to the higher 
oscillations. It appears that this is a local effect, which is only important for small values of 4. 
Therefore the numerical results for the displacement thickness should be considered with 
some care, since they have not the same accuracy as the other results of this paper. 

8.5. Pressure at the plate and velocity ahead of the plate 

From the Navier-Stokes equation in x-direction, viz. 

8u Ou_ 1 8p 
u ~x + v 8y p 8x + vAu (8.7) 

it follows that at the plate 

1 ~p 
- vAu. 

p 8x 

With u =  80/8y we find, for the pressure at the plate, using (2.3) and (3.1) 

8p 1 8K ,=o 
84 r &/ - 

The dimensionless pressure p is ~ = p/(p U~) and K is the modified vorticity (3.5). 
Using (5.1) and the fact that f '"(0) = 0 we obtain 

_ _  1 8K, 
ap (4, o) _ 42 (e, o) 

or 

r 1 8K~ (2,0)dX. (8.8) 

The integral has been calculated after transformation to the a-variable (5.5). The value of the 
normal derivative ~Kff&l has been computed from the values of KI(~, t/) for n>=0 with qua- 
dratic interpolation. The results have been checked asymptotically with the approximation 

p2 
fi(r O ) -  fi~ + ~ (r (8.9) 

where fi is given in (4.3). The approximation (8.9) may be found from (5.4) and the Appendix. 
For results see table 1 and fig. 4. 

Second, the velocity u(x, 0) ahead of the plate has been investigated. This is given by 

1 8~1 u 8~u 1 8 ~  _ f(2q) + 2t/ . 
~(x,, O) - Uo - 8yl - 2t/ 8{ 2q - -  - ~ -  (0, tt) (8.10) 

where ~=Yl = 0  and xl = _~/2. The results have been presented in fig. 5. 
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TABLE 1 

25 

j r = ~/R, 1~ R:, Rxcf 41 rl* p - p ~  
(eq. 8.1) (eq. 8.3) (eq. 8.6) (eq. 8.8) 

0 0 - ~ 0.7549 0 
2 0.2725 - 1.129 0.7571 0,0500 0.682 1.16 • t0-1 
4 0.5974 -0.447 0.7616 0.1119 0.698 1.02x 10 -1 
6 0.9891 -0.009 0.7655 0.1900 0.722 8.56 x 10 -2 
8 1.4672 0.333 0.7664 0.2878 0.748 6.87 • 10-2 

10 2.0591 0.627 0.7631 0.4073 0.771 5.29 • 10 -2 
12 2.8045 0.896 0.7554 0.5494 0.788 3.91 x 10 -2 
14 3.7627 1.151 0.7441 0.7136 0.799 2.76 • 10 -2 
16 5.0257 1.402 0.7302 0.8976 0.806 1.84 • 10- 2 
18 6.7437 1.658 0.7153 1.0979 0.815 1.15 • 10 -2 
20 9.1772 1.925 0.7007 1.3089 0.826 6.58 x 10- 3 
22 12.817 2.216 0.6877 1.5231 0.839 3.36 x 10- 3 
24 18.693 2.543 0.6773 1.7311 0,849 1.48 • 10 -3 
26 29.358 2.935 0.6702 1.9230 0.856 5.41 • 10 -4 
28 53,038 3,449 0.6662 2.0918 0.859 1.48 x 10 -4 
30 135.34 4.263 0,6645 2.2350 0.860 1.94x 10 -5 
32 ~ ~ 0.6641 2.3428 0.860 0 

TABLE 2 
( r  ~ R x = 1 3 5 . 3 4 ; g l i s t h e a s y m p t o t i c a p p r o x i m a t i o n ( 5 . 4 )  with Cz= - 2 ( s e e a l s o s e c .  8.3)). 

k ~ ~'1 (~. ,) C2 KI (~. ,) g l  (~. ~) a(0..) 
(sec. 6) (eq. 8.5) (sec. 6) (eq. 5.4) (eq. 8.10) 

0 0 0 0.02505 0.02488 0 
4 0.2158 0.00231 -2 .14  0.02358 0.02350 0.0814 
8 0.6055 0.01732 -2 .13 0.01730 0.01742 0.2257 

12 1.1400 0.05310 -2.11 -0.00166 -0.00119 0.4041 
16 1.7708 0.09199 -2 .05 -0.01631 -0.01604 0.5638 
20 2.4402 0.10853 - 1.98 - 0.00737 - 0.00779 0.6725 
24 3,1055 0.11104 - 1.95 -0.00089 -0.00110 0.7394 
28 3.8139 0.11117 - 1.96 - 0.00002 - 0.00004 0.7859 
32 5.0000 0.11107 -1 .98  0 0.8349 
40 6.3557 0.11084 -1 ,99  0.8690 
48 9.5691 0.11003 -2.01 0.9120 
56 20.858 0.10635 -2 .05 0.959l 
64 co 0 1 

9. Appendix 

The behaviour of ~a and K1 for large values of 4. 

Eq. (5.4) give the first terms of the asymptotic series of ~/'t and K~ for large ~. They contain the 
functions h(2q) and g(2~/), which themselves satisfy differential equations. Substitute eqs. (5.4) 
into the first equation (5.2) and consider the terms O (~- ~ In 0 .  In order that these vanish, we 
should have 

2h"" +fh'" + 3f'h" + f "h ' - f ' "h=O,  

with boundary conditions 

~ / = 0  h = h ' - - 0  

q ~ o0 h'--* 0, exponentially. 
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The differential equation can be integrated once with the result that 

2h'" +fh" + 2 f ' h ' - f " h = O ,  (A.1) 

where the integration constant has been put equal to 0, since for t/--, oo we must have f " ,  h', 
h", h '"~0.  

Using the fact that the Blasius functionfis  an integrating factor of (A.1) we obtain 

2fh" + ( f 2 -  2f')h' + 2f"h = O , 

where the integration constant vanishes again. 
The general solution of this second order equation is 

h(2t/) = C 1 ( f -  2rbf' ) + C2f ' .  

The boundary condition h'(0)= 0 yields C2 = 0  and the solution which satisfies the boundary 
conditions is 

h (2q) = C, ( f -  2rf ' )  

where C~ is for the moment still arbitrary. The function h is seen to be identical to the first 
eigensolution of the first order boundary layer equations. 

We now consider the terms of O (4- ~) in the first equation (5.2) after substitution of eqs, (5.4). 
These yield 

29"" +fg"  + 3f' 9" + f "  g ' - f "  9 = 4rf'" + Zq2f ' f" +tlff" + f ' h " - f ' " h  . 

Substituting the value obtained for h, we have 

f ' h " - f ' " h  = -C~( f f " ) '  . 

Also there holds 
d y 

4rl/"" + 2tlzf ' f"  +rlff ' '= �88 d--~} ( -2r/ / ' )  z �9 

With aid of the two last relations we can integrate the differential equation to 

2 '" +*%" + 2f . . . . .  = g ay '.J g - J  9 �88 2 } - C t f f ' '  (A.2) 

where the integration constant _�88 has been obtained from the requirement that 9'--+0 for 
t/--+ co. 

The solution of equation (A.2) is 

g(2t/) = C2 ( f -  2r0 c') + a 9 ,  

where C2 is an arbitrary constant and A9 is a particular solution satisfying the boundary 
conditions " 

= 0 A9 = (Ag)' = (A9)" = 0 

I"1--+ co (Ag)'-+ O, exponentially. 

The constant C1 should have a definite value in order that eq. (A.2) possesses a solution of 
which all derivatives vanish exponentially at infinity. 

This value can be obtained by multiplication of eq. (A.2) with f and integration between 
o and co. The left hand side then becomes 

2 f g " + ( f 2 - 2 f ' ) g ' + 2 f "  9 o 

which vanishes at both limits if 9' and 9" decrease exponentially for t /~  co. Hence, the right 
hand side must also be equal to 0, which gives 

foo I 2//f,  2 [_}j-{(f_ ) _fi2} _Ct f2 f , ]d (2r l )  = O. 
0 
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This  yields,  u s ing  (3.4) 

CI = �88 f { ( f - 2 r l f ' ) 2 - ~ 2 } d ( 2 q )  = - 1 .65906126.  
0 

T h e n  h"(O) = - C~C"(0) = 0.55090346. 

A l s o  the re  ho ld s  

h(oo) = - t i C 1  = 2.85489213 

g ( o o )  = - + Ag( ) 

= - 1 .72078765C 2 - 2 .20722510 .  

27 
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Note added in proof: 

An improved method of numerical solution as well as additional numerical results for the flow field will be published in 
E. F. F. Botta and D. Dijkstra, Report TW-80,Math. Dept., University of Groningen (1970). 
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